History of diatoms
Role of diatom in nature
Gross, M. (2012). The mysteries of the diatoms. Current Biology, 22(15), R581–R585. http://doi.org/10.1016/j.cub.2012.07.041
Barron, J. a. (2003). Planktonic Marine Diatom Record of the Past 18 M.Y.: Appearances and Extinctions in the Pacific and Southern Oceans. Diatom Research, 18, 203–224. http://doi.org/10.1080/0269249X.2003.9705588
Carbon Fixation
Roberts, K., Granum, E., Leegood, R. C., & Raven, J. a. (2007). Carbon acquisition by diatoms. Photosynthesis Research, 93(1-3), 79–88. http://doi.org/10.1007/s11120-007-9172-2

(Engineering) Growth rate studies
Gilstad, M., & Sakshaug, E. (1990). Growth rates of ten diatom species from the Barents Sea at different irradiances and day lengths . Marine Ecology Progress Series, 64, 169–173. http://doi.org/10.3354/meps064169
D’Elia, C. F., Guillard, R. R. L., & Nelson, D. M. (1979). Growth and competition of the marine diatoms <i>Phaeodactylum tricornutum</i> and <i>Thalassiosira pseudonana</i>. I. Nutrient effects. Marine Biology, 50, 305–312. http://doi.org/10.1007/bf00387007
Andrianasolo, E. H. (2008). Effect of aeration rates on growth rates and natural abundans of Phaeodactylum tricornutum. Journal of Natural Products, 71, 1197–1201. http://doi.org/10.1021/np800124k
Morais, K. C. C., Ribeiro, R. L. L., Santos, K. R., Taher, D. M., Mariano, a B., & Vargas, J. V. C. (2009). Phaeodactylum tricornum microalgae growth rate in heterotrophic and mixotrophic conditions. Engenharia Térmica (Thermal Engineering), 8(June), 84–89.

Biochemistry physiology cell wall
Hecky, R. E., Mopper, K., Kilham, P., & Degens, E. T. (1973). The amino acid and sugar composition of diatom cell-walls. Marine Biology, 19, 323–331. http://doi.org/10.1007/BF00348902
De La Rocha, C. L. (2000). Effects of iron and zinc deficiency on elemental composition and silica production by diatoms. Retrieved March 13, 2015, from http://www.int-res.com/articles/meps/195/m195p071.pdf
Tesson, B., Gaillard, C., & Martin-Jézéquel, V. (2009). Insights into the polymorphism of the diatom Phaeodactylum tricornutum Bohlin. Botanica Marina, 52(2), 104–116. http://doi.org/10.1515/BOT.2009.012

Silica Content
Conley, D. J., Kilham, S. S., & Theriot, E. (1989). Differences in silica content between marine and freshwater diatoms. Limnology and Oceanography, 34, 205–212. http://doi.org/10.4319/lo.1989.34.1.0205
Medlin, L. K. (2002). Why Silica or Better Yet Why Not Silica? Speculations As To Why the Diatoms Utilise Silica As Their Cell Wall Material. Diatom Research, 17, 453–459. http://doi.org/10.1080/0269249X.2002.9705562

Jamali, A. A., Akbari, F., Ghorakhlu, M. M., de la Guardia, M., & Khosroushahi, A. Y. (2012). Applications of diatoms as potential microalgae in nanobiotechnology. BioImpacts, 2(2), 83–89. http://doi.org/10.5681/bi.2012.012
Lebeau, T., & Robert, J.-M. (2003). Diatom cultivation and biotechnologically relevant products. Part II: current and putative products. Applied Microbiology and Biotechnology, 60, 624–632. http://doi.org/10.1007/s00253-002-1176-4
Ramachandra, T. V, Mahapatra, D. M., Karthick, B., & Gordon, R. (2009). Milking Diatoms for Sustainable Gasoline: Biochemical Engineering vs Diatom Solar Panels. Wetlands, 8769–8788.

Specific Applications
Kelly, M. G. (2002). Role of benthic diatoms in the implementation of the Urban Wastewater Treatment Directive in the River Wear, North-East England. Journal of Applied Phycology, 14, 9–18. http://doi.org/10.1023/A:1015236404305

Silica in the environment
Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R. ., Brzezinski, M. ., DeMaster, D. ., … Quéguiner, B. (2000). A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 26(4), 317–365. http://doi.org/10.1016/S0921-8181(00)00052-7

Silica wastes
Rice Husk
Vaibhav, V., Vijayalakshmi, U., & Roopan, S. M. (2015). Agricultural waste as a source for the production of silica nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 139, 515–520. http://doi.org/10.1016/j.saa.2014.12.083
Liu, N., Huo, K., McDowell, M. T., Zhao, J., & Cui, Y. (2013). Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Scientific Reports, 3, 1919. http://doi.org/10.1038/srep01919

Electronic Wastes
Bazargan, A., Bwegendaho, D., Barford, J., & McKay, G. (2014). Printed circuit board waste as a source for high purity porous silica. Separation and Purification Technology, 136, 88–93. http://doi.org/10.1016/j.seppur.2014.08.026

Use more papers from the citation of the paper provided